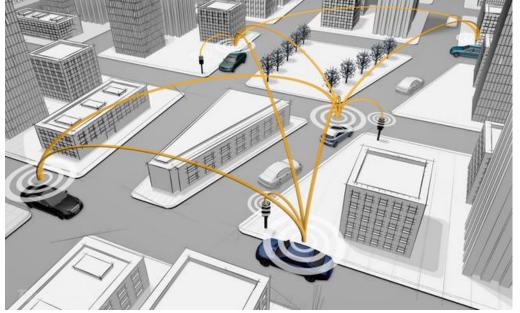


Bundesinitiative eMobility Austria

1. BieM Kamingespräch 2017


Automatic Driving & e-Mobility

Stand der Normierung und erste Feldversuche

Die Ausgangslage in Österreich

- C-ITS Entwicklungskorridor: Rotterdam Frankfurt Wien
- Beiträge zu diesem Korridor ab 2011:
 - "Testfeld Telematik": Erforschung der Machbarkeit kooperativer Dienste im Straßenverkehr; 2011 – 2013
 - ECo AT: seit 2013 laufendes Projekt zur Entwicklung und dem Testen kooperativer Dienste
- Explizite Behandlung des Themas auf Universitäten, z.B.:
 - FoAT: Forschungsprojekt der TU Graz; Ziel: Analyse der Handlungsfelder bzgl. autonomen Fahrens
 - AVENUE 21: Projekt der TU Wien;
 Thema: Erforschung der Weiterentwicklung europäischer Städte aufgrund von autonomem Verkehr
- 08.06.2016: Veröffentlichung des "Aktionsplan Automatisiertes Fahren" des BMVIT:
 - Beschreibt die Pläne des Bundesministers für dieses Thema bis 2018

Aktuelle Feldversuche in Österreich

Österreich:

- Erster Test von AVL List & Magna auf Österreichs Straßen am 21.12.2016
- Geplante regelmäßige Testfahrten mit PKW seit Beginn 2017 auf z.B. der A2, A9 oder der S6
- Veröffentlichung und Test des ersten autonomen Minibusses in Salzburg (Bild)
- Test autonom fahrender Traktoren durch das Bundesheer im Jahr 2017
- Entwicklung des Testzentrums "ALP.Lab" für Autonomes Fahren in der Steiermark, initiiert von AVL, Magna, Joanneum Research und der TU Graz
- Ab 2017/18: Test von Fahrzeugen zur gewerblichen Nutzung (Bus, LKW) in Salzburg/Linz

- Göteborg/London: Seit Anfang 2017 testet Volvo hier bis zu 100 teilautonome Fahrzeuge
- Pittsburgh/San Francisco: Test einer Flotte autonomer Uber-Fahrzeuge im Herbst 2016
- Singapur: Seit Herbst 2016 selbstfahrende Touristenbusse und der erste selbstfahrende Taxidienst "Nutonomy"
- Berlin: Autonom fahrende Version des Anrufsammeltaxis: "Olli", selbstfahrender Kleinbus mit IBMs "Watson"-Technologie an Bord

Die Europäische Situation

- Förderung einiger EU-übergreifenden Projekte durch die Europäische Kommission
- Besonderes Augenmerk: Nutzung der C-ITS Korridore als Katalysator
- Beispiele:
 - Projekt "Pegasus" (2014): Entwicklung von Standards für hochautomatisierte Fahrzeuge
 - Projekt "Autocits": Zusammenhängender Test autonomer Fahrzeuge und der Kommunikationsstruktur im Verkehr (V2X) in Madrid, Paris und Lissabon (Bild
- 3.-4. April 2017: Erste Konferenz über Autonomes Fahren in Brüssel

- Seit 01/2014: Einteilung in Levels nach der SAE J3016 Norm
 - Level 1: Driver Assistance
 - Level 2: Partial Automation (z.B. ein Autopilot für die Autobahn)
 - Level 3: Conditional Automation (Mit Umgebungsbeobachtung, das System braucht aber noch einen Fahrer, der eingreifen kann)
 - Level 4: High Automation (Benötigt keinen aktiven Fahrer mehr, jener kann aber immer eingreifen)
 - Level 5: Full Automation: Autonomes Fahren in jeder Verkehrsumgebung!
- Ähnliche Normierung des Bundesamtes für Straßenwesen in DE

- 33.KFG-Novelle, in Kraft getreten am 2. August 2016
- Änderungen laut BGB Nr.67: "Schaffung der gesetzlichen Grundlage, um das automatisierte Fahren unter bestimmten Voraussetzungen zu ermöglichen."
- Verbliebene rechtliche Fragen:
 - Automatisierungsrisiko
 - Bei Vollautomatisierung: Kein menschliches Versagen möglich -> Haftungsfrage
- Insgesamt: Autonomes Fahren forciert einen grundlegenden Wandel, auch und besonders auf rechtlicher Ebene!

Akzeptanz bei der Bevölkerung

- Problematische Einschätzung (ähnlich zu e-Mobility): Die Meinung der Konsumenten zu technologischen Neuheiten wie autonomem Fahren ist schwierig zu erkunden.
- Beispielhafte Erhebung aus dem Projekt "Villa Ladenburg" der Daimler-Benz-Stiftung (n=647): Analyse von Reaktionen auf deutsche Internet-Artikel
 - Folgeerscheinungen autonomen Fahrens auf sachlicher Ebene:
 - + Erhöhte Verkehrssicherheit
 - + Erhöhung des Reisekomforts
 - Beitrag zur Verkehrsoptimierung
 - Datenmissbrauch
 - Teuerung
 - Mangelnde technische Infrastruktur
 - Prinzipielle Bewertung autonomen Fahrens auf subjektiver Ebene:
 - 48% negativ, 35% positiv, 17% ambivalent

Folgen Autonomen Fahrens & Handlungsfelder

- e-Mobility, C-ITS und Autonomes Fahren als Teile eines neuen Mobilitätskonzeptes
 Wichtigste Folge It. Quintessenz Organisationsberatung:
- Optimierte PKW-Allokation, d.h. die Vorteile des Privat-PKW k\u00f6nnen durch selbstfahrende PKW ressourcenschonend verwirklicht werden.
 - Enormer Rückgang der Privat-PKW, Umstellung auf Carsharing
 - Komplett neue Einbettung dieses Verkehrs in das Gesamtverkehrssystem
 - Evtl. noch mehr Abhängigkeit von großen Konzernen?

Folgen Autonomen Fahrens & Handlungsfelder

- Zukünftige Entwicklung nach Studie der Automotive Tech.AD Berlin 2017:
 - Etablierung in öffentlichen Verkehrsmitteln/Shuttle services in naher Zukunft
 - Vollständige Einführung in den Straßenalltag >10 Jahre
- Was ist zu tun?
 - Ausbau der Ladeinfrastruktur (trivial)
 - Fortführung/Ausbau der Technologieförderung
 - Aufbauen intelligenter Netze zur Verkehrskommunikation
 - Direkte Überführung in Smart City-orientierte Konzepte

1. BieM Kamingespräch 2017 Ihr Podium heute Abend:

- Herr Thomas Meißner, Berliner Agentur für Elektromobilität
- Herr Dominik Neuwirth, UBER.COM
- Herr Univ.-Doz. Dr. Siegfried Reich, Salzburg Research

Moderation: Helmut-Klaus Schimany, Vorsitzender BieM

Bundesinitiative eMobility Austria